Material Detail

Non-Linear Matrix Factorization with Gaussian Processes

Non-Linear Matrix Factorization with Gaussian Processes

This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. A popular approach to collaborative filtering is matrix factorization. In this paper we consider the "probabilistic matrix factorization" and by taking a latent variable model perspective we show its equivalence to Bayesian PCA. This inspires us to consider probabilistic PCA and its non-linear extension, the Gaussian process latent variable model (GP-LVM) as an approach for probabilistic non-linear matrix factorization. We apply approach to benchmark movie recommender data sets. The results show better than previous state-of-the-art performance.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.