Material Detail

Exploiting Burstiness in Reviews for Review Spammer Detection

Exploiting Burstiness in Reviews for Review Spammer Detection

This video was recorded at 7th International AAAI Conference on Weblogs and Social Media (ICWSM), Boston 2013. Online product reviews have become an important source of user opinions. Due to profit or fame, imposters have been writing deceptive or fake reviews to promote and/or to demote some target products or services. Such imposters are called review spammers. In the past few years, several approaches have been proposed to deal with the problem. In this work, we take a different approach, which exploits the burstiness nature of reviews to identify review spammers. Bursts of reviews can be either due to sudden popularity of products or spam attacks. Reviewers and reviews appearing in a burst are often related in the sense that spammers tend to work with other spammers and genuine reviewers tend to appear together with other genuine reviewers. This paves the way for us to build a network of reviewers appearing in different bursts. We then model reviewers and their co-occurrence in bursts as a Markov Random Field (MRF), and employ the Loopy Belief Propagation (LBP) method to infer whether a reviewer is a spammer or not in the graph. We also propose several features and employ feature induced message passing in the LBP framework for network inference. We further propose a novel evaluation method to evaluate the detected spammers automatically using supervised classification of their reviews. Additionally, we employ domain experts to perform a human evaluation of the identified spammers and non-spammers. Both the classification result and human evaluation result show that the proposed method outperforms strong baselines, which demonstrate the effectiveness of the method.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.