Material Detail

Incremental Learning with Multiple Classifier Systems Using Correction Filters for Classification

Incremental Learning with Multiple Classifier Systems Using Correction Filters for Classification

This video was recorded at 7th International Symposium on Intelligent Data Analysis, Ljubljana 2007. Classification is a quite relevant task within data mining area. This task is not trivial and some difficulties can arise depending on the nature of the problem. Multiple classifier systems have been used to construct ensembles of base classifiers in order to solve or alleviate some of those problems. One of the most current problems that is being studied in recent years is how to learn when the datasets are too large or when new information can arrive at any time. In that case, incremental learning is an approach that can be used. Some works have used multiple classifier system to learn in an incremental way and the results are very promising. The aim of this paper is to propose a method for improving the classification (or prediction) accuracy reached by multiple classifier systems in this context.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.