Material Detail

Learning relational bayesian classifiers from RDF data

Learning relational bayesian classifiers from RDF data

This video was recorded at 10th International Semantic Web Conference (ISWC), Bonn 2011. The increasing availability of large RDF datasets offers an exciting opportunity to use such data to build predictive models using machine learning algorithms. However, the massive size and distributed nature of RDF data calls for approaches to learning from RDF data in a setting where the data can be accessed only through a query interface, e.g., the SPARQL endpoint of the RDF store. In applications where the data are subject to frequent updates, there is a need for algorithms that allow the predictive model to be incrementally updated in response to changes in the data. Furthermore, in some applications, the attributes that are relevant for specific prediction tasks are not known a priori and hence... Show More


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.