Material Detail

dipLODocus[RDF]: Short and Long-Tail RDF Analytics for Massive Webs of Data

dipLODocus[RDF]: Short and Long-Tail RDF Analytics for Massive Webs of Data

This video was recorded at 10th International Semantic Web Conference (ISWC), Bonn 2011. The proliferation of semantic data on the Web requires RDF database systems to constantly improve their scalability and transactional efficiency. At the same time, users are increasingly interested in investigating or visualizing large collections of online data by performing complex analytic queries. This paper introduces a novel database system for RDF data management called dipLODocus[RDF] , which supports both transactional and analytical queries efficiently. dipLODocus[RDF] takes advantage of a new hybrid storage model for RDF data based on recurring graph patterns. In this paper, we describe the general architecture of our system and compare its performance to state-of-the-art solutions for both transactional and analytic workloads.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.