Material Detail

An Efficient Bit Vector Approach to Semantics-based Machine Perception in Resource-Constrained Devices

An Efficient Bit Vector Approach to Semantics-based Machine Perception in Resource-Constrained Devices

This video was recorded at 11th International Semantic Web Conference (ISWC), Boston 2012. The primary challenge of machine perception is to define efficient computational methods to derive high-level knowledge from low-level sensor observation data. Emerging solutions are using ontologies for expressive representation of concepts in the domain of sensing and perception, which enable advanced integration and interpretation of heterogeneous sensor data. The computational complexity of OWL, however, seriously limits its applicability and use within resource-constrained environments, such as mobile devices. To overcome this issue, we employ OWL to formally define the inference tasks needed for machine perception – explanation and discrimination – and then provide efficient algorithms for these tasks, using bit-vector encodings and operations. The applicability of our approach to machine perception is evaluated on a smart-phone mobile device, demonstrating dramatic improvements in both efficiency and scale.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Browse...

Disciplines with similar materials as An Efficient Bit Vector Approach to Semantics-based Machine Perception in Resource-Constrained Devices

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.