Material Detail

Improving Data Mining Utility with Projective Sampling

Improving Data Mining Utility with Projective Sampling

This video was recorded at 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Paris 2009. Overall performance of the data mining process depends not just on the value of the induced knowledge but also on various costs of the process itself such as the cost of acquiring and pre-processing training examples, the CPU cost of model induction, and the cost of committed errors. Recently, several progressive sampling strategies for maximizing the overall data mining utility have been proposed. All these strategies are based on repeated acquisitions of additional training examples until a utility decrease is observed. In this paper, we present an alternative, projective sampling strategy, which fits functions to a partial learning curve and a partial run-time curve obtained from a small subset of potentially available data and then uses these projected functions to analytically estimate the optimal training set size. The proposed approach is evaluated on a variety of benchmark datasets using the RapidMiner environment for machine learning and data mining processes. The results show that the learning and run-time curves projected from only several data points can lead to a cheaper data mining process than the common progressive sampling methods.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.