Material Detail

Evolutionary Hierarchical Dirichlet Processes for Multiple Correlated Time-varying Corpora

Evolutionary Hierarchical Dirichlet Processes for Multiple Correlated Time-varying Corpora

This video was recorded at 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Washington 2010. Mining cluster evolution from multiple correlated time-varying text corpora is important in exploratory text analytics. In this paper, we propose an approach called evolutionary hierarchical Dirichlet processes(EvoHDP) to discover interesting cluster evolution patterns from such text data. We formulate the EvoHDP as a series of hierarchical Dirichlet processes(HDP) by adding time dependencies to the adjacent epochs, and propose a cascaded Gibbs sampling scheme to infer the model. This approach can discover different evolving patterns of clusters, including emergence, disappearance, evolution within a corpus and across different corpora. Experiments over... Show More

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.
hidden