Material Detail

Learning to Compare using Operator-Valued Large-Margin Classifiers

Learning to Compare using Operator-Valued Large-Margin Classifiers

This video was recorded at NIPS Workshop on Learning to Compare Examples, Whistler 2006. The proposed method uses homonymous and heteronymous examplepairs to train a linear preprocessor on a kernel-induced Hilbert space. The algorithm seeks to optimize the expected performance of elementary classifiers to be generated from single future training examples. The method is justified by PAC-style generalization guarantees and the resulting algorithm has been tested on problems of geometrically invariant pattern recognition and face verification.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.