Material Detail

Probabilistic account for multi-view stereo

Probabilistic account for multi-view stereo

This video was recorded at Workshop on Pattern Recognition and Machine Learning in Computer Vision, Grenoble 2004. This paper describes a method for dense depth reconstruction from wide-baseline images. In a wide-baseline setting an inherent difficulty which complicates the stereo correspondence problem is self-occlusion. Also, we have to consider the possibility that image pixels in different images, which are projections of the same point in the scene, will have different colour values due to non-Lambertian effects or discretization errors. We propose a Bayesian approach to tackle these problems. In this framework, the images are regarded as noisy measurements of an underlying 'true' image-function. Also, the image data is considered incomplete, in the sense that we do not know which pixels from a particular image are occluded in the other images. We describe an EM-algorithm, which iterates between estimating values for all hidden quantities, and optimising the current depth estimates. The algorithm has few free parameters, displays a stable convergence behaviour and generates accurate depth estimates.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.