Material Detail

Probabilistic Models for Data Combination in Recommender Systems

Probabilistic Models for Data Combination in Recommender Systems

This video was recorded at NIPS Workshop on Learning from Multiple Sources, Whistler 2008. We propose a method for jointly learning multiple related matrices, and show that, by sharing information between the two matrices, such an approach allows us to improve predictive performances for items where one of the matrices contains very sparse, or no, information. While the above justification has focused on recommender systems, the approach described is applicable to any two datasets that relate to a common set of items and can be represented in matrix form. Examples of such problems could include image data where each image is associated with a set of words (for example captioned or tagged images); sets of scientific papers that can be represented either using a bag-of-words representation or in terms of their citation links to and from other papers; corpora of documents that exist in two languages.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.