Material Detail

Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search

Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search

This video was recorded at Large-scale Online Learning and Decision Making (LSOLDM) Workshop, Cumberland Lodge 2012. Bayesian model-based reinforcement learning is a formally elegant approach to learning optimal behaviour under model uncertainty, trading off exploration and exploitation in an ideal way. Unfortunately, finding the resulting Bayes-optimal policies is notoriously taxing, since the search space becomes enormous. In this talk we introduce a tractable, sampled-based method for approximate Bayes-opti mal planning which exploits Monte-Carlo tree search. Our approach outperformed prior Bayesian model-based RL algorithms by a significant margin on several well-known benchmark problems-- because it avoids expensive applications of Bayes rule within the search tree by lazily sampling models from the current beliefs. We illustrate the advantages of our approach by showing it working in an infinite state space domain which is qualitatively out of reach of almost all previous work in Bayesian exploration.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.