Material Detail

Semi-Supervised Domain Adaptation with Non-Parametric Copulas

Semi-Supervised Domain Adaptation with Non-Parametric Copulas

This video was recorded at Video Journal of Machine Learning Abstracts - Volume 3. A new framework based on the theory of copulas is proposed to address semi-supervised domain adaptation problems. The presented method factorizes any multivariate density into a product of marginal distributions and bivariate copula functions. Therefore, changes in each of these factors can be detected and corrected to adapt a density model across different learning domains. Importantly, we introduce a novel vine copula model, which allows for this factorization in a non-parametric manner. Experimental results on regression problems with real-world data illustrate the efficacy of the proposed approach when compared to state-of-the-art techniques.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.