Material Detail

Compressive neural representation of sparse, high-dimensional probabilities

Compressive neural representation of sparse, high-dimensional probabilities

This video was recorded at Video Journal of Machine Learning Abstracts - Volume 3. This paper shows how sparse, high-dimensional probability distributions could be represented by neurons with exponential compression. The representation is a novel application of compressive sensing to sparse probability distributions rather than to the usual sparse signals. The compressive measurements correspond to expected values of nonlinear functions of the probabilistically distributed variables. When these expected values are estimated by sampling, the quality of the compressed representation is limited only by the quality of sampling. Since the compression preserves the geometric structure of the space of sparse probability distributions, probabilistic computation can be performed in the compressed... Show More
Rate

Quality

  • Editor Reviews
  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.