Material Detail

Agnostic Active learning

Agnostic Active learning

This video was recorded at Workshop on Modelling in Classification and Statistical Learning, Eindhoven 2004. The present workshop addresses the problem of predicting a - binary - label Y from given the feature X. A procedure for classification is to be learned from a training set (X1, Y1) , ... , (Xn , Yn ). In the statistical literature on classification, the training set is traditionally seen as an i.i.d. sample from the distribution P of (X,Y), but one otherwise does not assume any a priori knowledge on P. Theoretical results have been derived that hold no matter what P is, which typically means that such results concentrate on worst cases. There are various reasons to step aside from this so-called black box approach. For example, the by now generally accepted rule ``regression is... Show More


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.