Material Detail

On-line learning competitive with reproducing kernel Hilbert spaces

On-line learning competitive with reproducing kernel Hilbert spaces

This video was recorded at Workshop on Modelling in Classification and Statistical Learning, Eindhoven 2004. In this talk I will describe a new technique for designing competitive on-line prediction algorithms and proving loss bounds for them. The goal of such algorithms is to perform almost as well as the best decision rules in a wide benchmark class, with no assumptions made about the way the observations are generated. However, standard algorithms in this area can only deal with finite-dimensional (often countable) benchmark classes. The new technique gives similar results for decision rules ranging over infinite-dimensional function spaces. It is based on a recent game-theoretic approach to the foundations of probability and, more specifically, on recent results about defensive forecasting. Given the probabilities produced by a defensive forecasting algorithm, which are known to be well calibrated and to have good resolution in the long run, the expected loss minimization principle is used to find a suitable prediction.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.