Material Detail

Structured Output Prediction with Structural SVMs

Structured Output Prediction with Structural SVMs

This video was recorded at 6th International Workshop on Mining and Learning with Graphs (MLG), Helsinki 2008. This talk explores large-margin approaches to predicting graph-based objects like trees, clusterings, or alignments. Such problems arise, for example, when a natural language parser needs to predict the correct parse tree for a given sentence, when one needs to determine the co-reference relationships of noun-phrases in a document, or when predicting the alignment between two proteins. In particular, the talk will show how structural SVMs can learn such complex prediction rules, using the problems of supervised clustering, protein sequence alignment, and diversification in search engines as application examples. Furthermore, the talk will present new cutting-plane algorithms that... Show More
Rate

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.
hidden