Material Detail

Active and guided learning of enzyme function

Active and guided learning of enzyme function

This video was recorded at 6th International Workshop on Machine Learning in Systems Biology (MLSB), Basel 2012. Manual annotation cannot keep up with enzyme sequence discovery. In this work, we modelled the use of active and guided learning to support enzyme function curation. We evaluated, on 5,750 E. coli proteins, nine strategies to sort instances for curation. We found that selecting sets of InterPro features in order of frequency of occurrence can cut the curation effort by almost two thirds, while maintaining very high accuracy and recall. The method can be applied to real-life datasets of millions of proteins thanks to its limited computational requirements, parallelisation, good coverage of rare classes and flexibility in selecting instances for annotation.
Rate

Quality

  • Editor Reviews
  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.