Material Detail

How to predict with Bayes, MDL, and Experts

How to predict with Bayes, MDL, and Experts

This video was recorded at Machine Learning Summer School (MLSS), Canberra 2005. Most passive Machine Learning tasks can be (re)stated as sequence prediction problems. This includes pattern recognition, classification, time-series forecasting, and others. Moreover, the understanding of passive intelligence also serves as a basis for active learning and decision making. In the recent past, rich theories for sequence prediction have been developed, and this is still an ongoing process. On the other hand, we are arriving at the stage where some important results are already termed classical. While much of the current Learning Theory is formulated under the assumption of independent and identically distributed (i.i.d.) observations, this lecture series focusses on situations without this prerequisite (e.g. weather or stock-market time-series).

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.