Material Detail

Generalization bounds

Generalization bounds

This video was recorded at Machine Learning Summer School (MLSS), Chicago 2005. When a learning algorithm produces a classifier, a natural question to ask is "How well will it do in the future?" To make statements about the future given the past, some assumption must be made. If we make only an assumption that all examples are drawn independently and identically from some (unknown) distribution, we can answer the question. The answer to this question is directly applicable to classifier testing and confidence reporting. It also provides a simple general explanation of "overfitting", and influences algorithm design.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.