Material Detail

Facial expression recognition and emotion recognition from speech

Facial expression recognition and emotion recognition from speech

This video was recorded at Machine Learning Summer School (MLSS), Taipei 2006. The presentation tackles the problem of recognizing the emotions based on video and audio data analysis. A fully automatic facial expression recognition system is based on three components: face detection, facial characteristic point extraction and classification. Face detection is employed by boosting simple rectangle Haar-like features that give a decent representation of the face. These features also allow the differentiation between a face and a non-face. The boosting algorithm is combined with an Evolutionary Search to speed up the overall search time. Facial characteristic points (FCP) are extracted from the detected faces. The same technique applied on faces is utilized for this purpose. Additionally, FCP extraction using corner detection methods and brightness distribution has also been considered. Finally, after retrieving the required FCPs the emotion of the facial expression can be determined.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.