Material Detail

Large-Margin Thresholded Ensembles for Ordinal Regression

Large-Margin Thresholded Ensembles for Ordinal Regression

This video was recorded at Machine Learning Summer School (MLSS), Taipei 2006. We propose a thresholded ensemble model for ordinal regression problems. The model consists of a weighted ensemble of confidence functions and an ordered vector of thresholds. Using such a model, we could theoretically and algorithmically reduce ordinal regression problems to binary classification problems in the area of ensemble learning. Based on the reduction, we derive novel large-margin bounds of common error functions, such as the classification error and the absolute error. In addition, we also design two novel boosting approaches for constructing thresholded ensembles. Both our approaches have comparable performance to the state-of-the-art algorithms, but enjoy the benefit of faster training. Experimental results on benchmark datasets demonstrate the usefulness of our boosting approaches.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.