Material Detail

The stability of a good clustering

The stability of a good clustering

This video was recorded at Machine Learning Summer School (MLSS), Taipei 2006. If we have found a "good" clustering C of data set X, can we prove that C is not far from the (unknown) best clustering C* of this data set? Perhaps surprisingly, the answer to this question is sometimes yes. We can show bounds on the distance( C, C* ) for two clustering cost functions: the Normalized Cut and the squared distance cost of K-means clustering. These bounds exist in the case when the data X admits a "good" clustering for the given cost.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.