Material Detail

MAP Estimation with Perfect Graphs

MAP Estimation with Perfect Graphs

This video was recorded at Machine Learning Summer School (MLSS), Chicago 2009. Efficiently finding the maximum a posteriori (MAP) configuration of a graphical model is an important problem which is often implemented using message passing algorithms and linear programming. The optimality of such algorithms is only well established for singly-connected graphs such as trees. Recently, along with others, we have shown that matching and b-matching also admit exact MAP estimation under max product belief propagation. This leads us to consider a generalization of trees, matchings and b-matchings: the fascinating family of so-called perfect graphs. While MAP estimation in general loopy graphical models is NP, for perfect graphs of a particular form, the problem is in P. This result leverages recent progress in defining perfect graphs (the strong perfect graph theorem which has been resolved after 4 decades), linear programming relaxations of MAP estimation and recent convergent message passing schemes. In particular, we convert any graphical model into a so-called nand Markov random field. This model is straightforward to relax into a linear program whose integrality can be established in general by testing for graph perfection. This perfection test is performed efficiently using a polynomial time algorithm. Alternatively, known decomposition tools from perfect graph theory may be used to prove perfection for certain graphs. Thus, a general graph framework is provided for determining when MAP estimation in any graphical model is in P, has an integral linear programming relaxation and is exactly recoverable by message passing.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.