Material Detail

Deep Learning in Natural Language Processing

Deep Learning in Natural Language Processing

This video was recorded at 23rd Annual Conference on Neural Information Processing Systems (NIPS), Vancouver 2009. This tutorial will describe recent advances in deep learning techniques for Natural Language Processing (NLP). Traditional NLP approaches favour shallow systems, possibly cascaded, with adequate hand-crafted features. In constrast, we are interested in end-to-end architectures: these systems include several feature layers, with increasing abstraction at each layer. Compared to shallow systems, these feature layers are learnt for the task of interest, and do not require any engineering. We will show how neural networks are naturally well suited for end-to-end learning in NLP tasks. We will study multi-tasking different tasks, new semi-supervised learning techniques adapted to these deep architectures, and review end-to-end structured output learning. Finally, we will highlight how some of these advances can be applied to other fields of research, like computer vision, as well.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.