Material Detail

Fast Subtree Kernels on Graphs

Fast Subtree Kernels on Graphs

This video was recorded at 23rd Annual Conference on Neural Information Processing Systems (NIPS), Vancouver 2009. In this article, we propose fast subtree kernels on graphs. On graphs with n nodes and m edges and maximum degree d, these kernels comparing subtrees of height h can be computed in O(mh), whereas the classic subtree kernel by Ramon & Gärtner scales as O(n24dh). Key to this efficiency is the observation that the Weisfeiler-Lehman test of isomorphism from graph theory elegantly computes a subtree kernel as a byproduct. Our fast subtree kernels can deal with labeled graphs, scale up easily to large graphs and outperform state-of-the-art graph kernels on several classification benchmark datasets in terms of accuracy and runtime.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.