Material Detail

Learning concept graphs from text with stick-breaking priors

Learning concept graphs from text with stick-breaking priors

This video was recorded at Video Journal of Machine Learning Abstracts - Volume 1. We present a generative probabilistic model for learning general graph structures, which we term concept graphs, from text. Concept graphs provide a visual summary of the thematic content of a collection of documents-a task that is difficult to accomplish using only keyword search. The proposed model can learn different types of concept graph structures and is capable of utilizing partial prior knowledge about graph structure as well as labeled documents. We describe a generative model that is based on a stick-breaking process for graphs, and a Markov Chain Monte Carlo inference procedure. Experiments on simulated data show that the model can recover known graph structure when learning in both unsupervised and semi-supervised modes. We also show that the proposed model is competitive in terms of empirical log likelihood with existing structure-based topic models (such as hPAM and hLDA) on real-world text data sets. Finally, we illustrate the application of the model to the problem of updating Wikipedia category graphs.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.