Material Detail

Exact learning curves for Gaussian process regression on large random graphs

Exact learning curves for Gaussian process regression on large random graphs

This video was recorded at Video Journal of Machine Learning Abstracts - Volume 1. We study learning curves for Gaussian process regression which characterise performance in terms of the Bayes error averaged over datasets of a given size. Whilst learning curves are in general very difficult to calculate we show that for discrete input domains, where similarity between input points is characterised in terms of a graph, accurate predictions can be obtained. These should in fact become exact for large graphs drawn from a broad range of random graph ensembles with arbitrary degree distributions where each input (node) is connected only to a finite number of others. The method is based on translating the appropriate belief propagation equations to the graph ensemble. We demonstrate the accuracy of the predictions for Poisson (Erdos-Renyi) and regular random graphs, and discuss when and why previous approximations to the learning curve fail.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.