Material Detail

The Kernel Beta Process

The Kernel Beta Process

This video was recorded at Video Journal of Machine Learning Abstracts - Volume 2. A new Lévy process prior is proposed for an uncountable collection of covariatedependent feature-learning measures; the model is called the kernel beta process (KBP). Available covariates are handled efficiently via the kernel construction, with covariates assumed observed with each data sample ("customer"), and latent covariates learned for each feature ("dish"). Each customer selects dishes from an infinite buffet, in a manner analogous to the beta process, with the added constraint that a customer first decides probabilistically whether to "consider" a dish, based on the distance in covariate space between the customer and dish. If a customer does consider a particular dish, that dish is then selected probabilistically as in the beta process. The beta process is recovered as a limiting case of the KBP. An efficient Gibbs sampler is developed for computations, and state-of-the-art results are presented for image processing and music analysis tasks.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.