Material Detail

Anatomically Constrained Decoding of Finger Flexion from Electrocorticographic Signals

Anatomically Constrained Decoding of Finger Flexion from Electrocorticographic Signals

This video was recorded at Video Journal of Machine Learning Abstracts - Volume 2. Brain-computer interfaces (BCIs) use brain signals to convey a user's intent. Some BCI approaches begin by decoding kinematic parameters of movements from brain signals, and then proceed to using these signals, in absence of movements, to allow a user to control an output. Recent results have shown that electrocorticographic (ECoG) recordings from the surface of the brain in humans can give information about kinematic parameters (e.g., hand velocity or finger flexion). The decoding approaches in these demonstrations usually employed classical classification/regression algorithms that derive a linear mapping between brain signals and outputs. However, they typically only incorporate little prior information... Show More
Rate

Quality

  • Editor Reviews
  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.