Material Detail

Generative and Discriminative Models in Statistical Parsing

Generative and Discriminative Models in Statistical Parsing

This video was recorded at NIPS Workshops, Whistler 2009. Since the earliest work on statistical parsing, a constant theme has been the development of discriminative and generative models with complementary strengths. In this work I'll give a brief history of discriminative and generative models in statistical parsing, focusing on strengths and weaknesses of the various models. I'll start with early work on discriminative history-based models (in particular, the SPATTER parser), moving through early discriminative and generative models based on lexicalized (dependency) representations, through to recent work on conditional-random-field based models. Finally, I'll describe research on semi-supervised approaches that combine discriminative and generative models.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.