Material Detail

Large-Scale Machine Learning: The Problems, Algorithms, and Challenges

Large-Scale Machine Learning: The Problems, Algorithms, and Challenges

This video was recorded at NIPS Workshops, Whistler 2009. To seed discussion, I will attempt to organize research efforts in large-scale machine learning by looking at common computational problems across all of machine learning, and the challenges of creating efficient parallel algorithms for them. I'll begin by identifying four common types of computational bottlenecks that occur across all of machine learning, or prototype algorithmic problems: N-body problems, graph operations, linear algebra, and optimization. Within each category, I'll discuss what we can or cannot learn from the existing body of work in scientific computing, highlight a few of the most successful and recent specific serial algorithms that have been developed for concreteness, and discuss what makes them easy or hard... Show More

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.
hidden