Material Detail

Multi-task feature learning

Multi-task feature learning

This video was recorded at Open House on Multi-Task and Complex Outputs Learning, London 2006. We present a method for learning a low-dimensional representation which is shared across a set of multiple related tasks. The method builds upon the well-known 1-norm regularization problem using a new regularizer which controls the number of learned features common for all the tasks. We show that this problem is equivalent to a convex optimization problem and develop an iterative algorithm for solving it.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.
hidden