Material Detail

Learning from Weakly Labeled Data

Learning from Weakly Labeled Data

This video was recorded at International Workshop on Advances in Regularization, Optimization, Kernel Methods and Support Vector Machines (ROKS): theory and applications, Leuven 2013. In many machine learning problems, the labels of the training examples are incomplete. These include, for example, (i) semi-supervised learning where labels are partially known; (ii) multi-instance learning where labels are implicitly known; and (iii) clustering where labels are completely unknown. In this talk, focusing on the SVM as the learner, I will describe a label generation strategy that leads to a convex relaxation of the underlying mixed integer programming problem. Computationally, it can be solved via a sequence of SVM subproblems that are much more scalable than other convex SDP relaxations. Empirical results on the three weakly labeled learning tasks above also demonstrate improved performance. (joint work with Yu-Feng Li, Ivor W. Tsang, and Zhi-Hua Zhou)


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.