Material Detail

Deep Support Vector Machines

Deep Support Vector Machines

This video was recorded at International Workshop on Advances in Regularization, Optimization, Kernel Methods and Support Vector Machines (ROKS): theory and applications, Leuven 2013. In this paper we describe a novel extension of the support vector machine, called the deep support vector machine (DSVM). The original SVM has a single layer with kernel functions and is therefore a shallow model. The DSVM can use an arbitrary number of layers, in which lower-level layers contain support vector machines that learn to extract relevant features from the input patterns or from the extracted features of one layer below. The highest level SVM performs the actual prediction using the highest-level extracted features as inputs. The system is trained by a simple gradient ascent learning rule on a min-max formulation of the optimization problem. A two-layer DSVM is compared to the regular SVM on ten regression datasets and the results show that the DSVM outperforms the SVM.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.