Material Detail

Hierarchical Annotation of Medical Images

Hierarchical Annotation of Medical Images

This video was recorded at Slovenian KDD Conference on Data Mining and Data Warehouses (SiKDD), Ljubljana 2008. In this paper, we describe an approach for the automatic medical annotation task of the 2008 CLEF cross-language image retrieval campaign (ImageCLEF). The data comprise 12076 fully annotated images according to the IRMA code. This work is focused on the process of feature extraction from images and hierarchical multi-label classification. To extract features from the images we used a technique called: local distribution of edges. With this techniques each image was described with 80 variables. The goal of the classification task was to classify an image according to the IRMA code. The IRMA code is organized hierarchically. Hence, as classifer we selected an extension of the predictive clustering trees (PCTs) that is able to handle this type of data. Further more, we constructed ensembles (Bagging and Random Forests) that use PCTs as base classifiers.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.