Material Detail

Fluid dynamics models for low rank discriminant analysis

Fluid dynamics models for low rank discriminant analysis

This video was recorded at 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia 2010. We consider the problem of reducing the dimensionality of labeled data for classification. Unfortunately, the optimal approach of finding the low-dimensional projection with minimal Bayes classification error is intractable, so most standard algorithms optimize a tractable heuristic function in the projected subspace. Here, we investigate a physics-based model where we consider the labeled data as interacting fluid distributions. We derive the forces arising in the fluids from information theoretic potential functions, and consider appropriate low rank constraints on the resulting acceleration and velocity flow fields. We show how to apply the Gauss principle of least... Show More


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.