Material Detail

Graph Helmholtzian and rank learning

Graph Helmholtzian and rank learning

This video was recorded at NIPS Workshop on Algebraic and Combinatorial Methods in Machine Learning, Whistler 2008. The graph Helmholtzian is the graph theoretic analogue of the Helmholtz operator or vector Laplacian, in much the same way the graph Laplacian is the analogue of the Laplace operator or scalar Laplacian. We will see that a decomposition associated with the graph Helmholtzian provides a way to learn ranking information from incomplete, imbalanced, and cardinal score-based data. In this framework, an edge flow representing pairwise ranking is orthogonally resolved into a gradient flow (acyclic) that represents the L2-optimal global ranking and a divergence-free flow (cyclic) that quantifies the inconsistencies. If the latter is large, then the data does not admit a statistically meaningful global ranking. A further decomposition of the inconsistent component into a curl flow (locally cyclic) and a harmonic flow (locally acyclic) provides information on the validity of small- and large-scale comparisons of alternatives. This is joint work with Xiaoye Jiang, Yuan Yao, and Yinyu Ye.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.