Material Detail

Robust approachability and regret minimization in games with partial monitoring

Robust approachability and regret minimization in games with partial monitoring

This video was recorded at 24th Annual Conference on Learning Theory (COLT), Budapest 2011. Approachability has become a standard tool in analyzing learning algorithms in the adversarial online learning setup. We develop a variant of approachability for games where there is ambiguity in the obtained reward that belongs to a set, rather than being a single vector. Using this variant we tackle the problem of approachability in games with partial monitoring and develop simple and efficient algorithms (i.e., with constant per-step complexity) for this setup. We finally consider external and internal regret in repeated games with partial monitoring, for which we derive regretminimizing strategies based on approachability theory.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.