Material Detail

Mixability is Bayes Risk Curvature Relative to Log Loss

Mixability is Bayes Risk Curvature Relative to Log Loss

This video was recorded at 24th Annual Conference on Learning Theory (COLT), Budapest 2011. Mixability of a loss governs the best possible performance when aggregating expert predictions with respect to that loss. The determination of the mixability constant for binary losses is straightforward but opaque. In the binary case we make this transparent and simpler by characterising mixability in terms of the second derivative of the Bayes risk of proper losses. We then extend this result to multiclass proper losses where there are few existing results. We show that mixability is governed by the Hessian of the Bayes risk, relative to the Hessian of the Bayes risk for log loss. We conclude by comparing our result to other work that bounds prediction performance in terms of the geometry of the Bayes risk. Although all calculations are for proper losses, we also show how to carry the results across to improper losses.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.