Material Detail

Flexible QSAR: functional machine learning in computational chemistry

Flexible QSAR: functional machine learning in computational chemistry

This video was recorded at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Barcelona 2010. QSAR (Quantitative Structure-Activity Relationship) modelling is a usual step in drug discovery. QSAR methods use statistical and machine learning tools to draw out the significant relationships between the molecular structure of the drug candidates (the molecules) and its biological profile. To achieve such a goal, researchers usually describe the molecules with arrays of physico-chemical properties, such as total molecular charge, molecular weight, number of hydrogen bonds donors, etc. However, the predictive accuracy of statistical and machine learning tools in QSAR have been typically very low and more advanced tools are needed... Show More

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.
hidden