Material Detail

Generalization Analysis of Listwise Learning-to-Rank Algorithms

Generalization Analysis of Listwise Learning-to-Rank Algorithms

This video was recorded at 26th International Conference on Machine Learning (ICML), Montreal 2009. This paper presents a theoretical framework for ranking, and demonstrates how to perform generalization analysis of listwise ranking algorithms using the framework. Many learning-to-rank algorithms have been proposed in recent years. Among them, the listwise approach has shown higher empirical ranking performance when compared to the other approaches. However, there is no theoretical study on the listwise approach as far as we know. In this paper, we propose a theoretical framework for ranking, which can naturally describe various listwise learning- to-rank algorithms. With this framework, we prove a theorem which gives a generalization bound of a listwise ranking algorithm, on the basis of Rademacher Average of the class of compound functions. The compound functions take listwise loss functions as outer functions and ranking models as inner functions. We then compute the Rademacher Averages for existing listwise algorithms of ListMLE, ListNet, and RankCosine. We also discuss the tightness of the bounds in different situations with regard to the list length and transformation function.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.