Material Detail

Feature Shaping for Linear SVM Classifiers

Feature Shaping for Linear SVM Classifiers

This video was recorded at 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Paris 2009. Linear classifiers have been shown to be effective for many discrimination tasks. Irrespective of the learning algorithm itself, the final classifier has a weight to multiply by each feature. This suggests that ideally each input feature should be linearly correlated with the target variable (or anti-correlated), whereas raw features may be highly non-linear. In this paper, we attempt to re-shape each input feature so that it is appropriate to use with a linear weight and to scale the different features in proportion to their predictive value. We demonstrate that this pre-processing is beneficial for linear SVM classifiers on a large benchmark of text classification tasks as well as UCI datasets.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.