Material Detail

Modeling Relational Events via Latent Classes

Modeling Relational Events via Latent Classes

This video was recorded at 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Washington 2010. Many social networks can be characterized by a sequence of dyadic interactions between individuals. Techniques for analyzing such events are of increasing interest. In this paper, we describe a generative model for dyadic events, where each event arises from one of $C$ latent classes, and the properties of the event (sender, recipient, and type) are chosen from distributions over these entities conditioned on the chosen class. We present two algorithms for inference in this model: an expectation-maximization algorithm as well as a Markov chain Monte Carlo procedure based on collapsed Gibbs sampling. To analyze the model's predictive accuracy, the algorithms are applied to multiple real-world data sets involving email communication, international political events, and animal behavior data.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.