Material Detail

Learning Theory: statistical and game-theoretic approaches

Learning Theory: statistical and game-theoretic approaches

This video was recorded at Machine Learning Summer School (MLSS ), Bordeaux 2011. The theoretical foundations of machine learning have a double nature: statistical and game-theoretic. In this course we take advantage of both paradigms to introduce and investigate a number of basic topics, including mistake bounds and risk bounds, empirical risk minimization, online linear optimization, compression bounds, overfitting and regularization. The goal of the course is to provide a sound mathematical framework within which one can investigate basic questions in learning theory, such as the dependence of the predictive performance of a model on the complexity of the model class and on the amount of training information.


  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material


Log in to participate in the discussions or sign up if you are not already a MERLOT member.