Material Detail

Efficient Learning using Forward-Backward Splitting

Efficient Learning using Forward-Backward Splitting

This video was recorded at 23rd Annual Conference on Neural Information Processing Systems (NIPS), Vancouver 2009. We describe, analyze, and experiment with a new framework for empirical loss minimization with regularization. Our algorithmic framework alternates between two phases. On each iteration we first perform an unconstrained gradient descent step. We then cast and solve an instantaneous optimization problem that trades off minimization of a regularization term while keeping close proximity to the result of the first phase. This yields a simple yet effective algorithm for both batch penalized risk minimization and online learning. Furthermore, the two phase approach enables sparse solutions when used in conjunction with regularization functions that promote sparsity, such as ℓ1. We derive concrete and very simple algorithms for minimization of loss functions with ℓ1, ℓ2, ℓ2 2, and ℓ∞ regularization. We also show how to construct efficient algorithms for mixed-norm ℓ1/ℓq regularization. We further extend the algorithms and give efficient implementations for very high-dimensional data with sparsity. We demonstrate the potential of the proposed framework in experiments with synthetic and natural datasets.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.