Material Detail

Learning Convolutional Feature Hierarchies for Visual Recognition

Learning Convolutional Feature Hierarchies for Visual Recognition

This video was recorded at Video Journal of Machine Learning Abstracts - Volume 1. We propose an unsupervised method for learning multi-stage hierarchies of sparse convolutional features. While sparse coding has become an increasingly popular method for learning visual features, it is most often trained at the patch level. Applying the resulting filters convolutionally results in highly redundant codes because overlapping patches are encoded in isolation. By training convolutionally over large image windows, our method reduces the redudancy between feature vectors at neighboring locations and improves the efficiency of the overall representation. In addition to a linear decoder that reconstructs the image from sparse features, our method trains an efficient feed-forward encoder that... Show More

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.
hidden