Material Detail

Probabilistic Control in Human Computer Interaction

Probabilistic Control in Human Computer Interaction

This video was recorded at NIPS Workshops, Whistler 2009. Continuous interaction with computers can be treated as a control problem subject to various sources of uncertainty. We present examples of interaction based on multiple noisy sensors (capacitive sensing, location- and bearing sensing and EEG), in domains which rely on inference about user intention, and where the use of particle filters can improve performance. We use the "H-metaphor" for automated, flexibly handover of level of autonomy in control, as a function of the certainty of control actions from the user, in an analogous fashion to 'loosening the reins' when horse-riding. Integration of the inference mechanisms with probabilistic feedback designs can have a significant effect on behaviour, and some examples are presented. (Joint work with John Williamson, Simon Rogers and Steven Strachan).

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.