Material Detail

Semantic text features from small world graphs

Semantic text features from small world graphs

This video was recorded at Workshop on Subspace, Latent Structure and Feature Selection Techniques: Statistical and Optimisation Perspectives, Bohinj 2005. We present a set of methods for creating a semantic representation from a collection of textual documents. Given a document collection we use a simple algorithm to connect the documents into a tree or a graph. Using the imposed topology we define a feature and document similarity measures. We use the kernel alignment to compare the quality of various similarity measures. Results show that the document similarity defined over the topology gives better alignment than standard cosine similarity measure on a bag of words document representation.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.