Material Detail

Time Will Tell: Leveraging Temporal Expressions in IR

Time Will Tell: Leveraging Temporal Expressions in IR

This video was recorded at Second ACM International Conference on Web Search and Data Mining - WSDM 2009. Temporal expressions, such as between 1992 and 2000, are frequent across many kinds of documents. Text retrieval, though, treats them as common terms, thus ignoring their inherent semantics. For queries with a strong temporal component, such as U.S. president 1997, this leads to a decrease in retrieval effectiveness, since relevant documents (e.g., a biography of Bill Clinton containing the aforementioned temporal expression) can not be reliably matched to the query. We propose a novel approach, based on language models, to make temporal expressions first-class citizens of the retrieval model. In addition, we present experiments that show actual improvements in retrieval effectiveness.

Quality

  • User Rating
  • Comments
  • Learning Exercises
  • Bookmark Collections
  • Course ePortfolios
  • Accessibility Info

More about this material

Comments

Log in to participate in the discussions or sign up if you are not already a MERLOT member.